Elevator Problems

- A scale reads the normal force
 - The normal force is equal to your apparent weight

A 70 kg person is standing on a scale in an elevator.

a) What will the scale read if he is at rest?

b) The elevator accelerates upwards at 0.70 m/ s^2. What will a scale read?

c) After reaching a speed of 1.0 m/s. The elevator travels at a constant velocity for 12 s. What is his apparent weight during this time?

d) After moving upwards at 1.0 m/s for 12 s, the elevator slows down to a stop over 2.5 s. What is his apparent weight?

Elevator Problems

SCALE

A scale reads the normal force

A 70 kg person is standing on a scale in an elevator.

a) What will the scale read if he is at rest?

b) The elevator accelerates upwards at 0.70 m/ s^2. What will a scale read?

c) After reaching a speed of 1.0 m/s. The elevator travels at a constant velocity for 12 s. What is his apparent weight during this time?

d) After moving upwards at 1.0 m/s for 12 s, the elevator slows down to a stop over 2.5 s. What is his apparent weight?

•)	9 FN	Frez = ma E = E = D
	f ↓ f _a	$F_N - F_g = 0$ $F_N = F_g$ = mg
		= (70)(9.8) = 686 N

b)

$$F_{N} = ma$$

 $F_{N} - F_{g} = ma$
 $F_{N} - F_{g} = ma$
 $F_{N} - mg = mq$
 $F_{N} = ma + mg$
 $= m(a+g)$
 $= 70(0.7+9.8)$
 $= 735 N$

c)
$$f_N$$

 $\Rightarrow a=0, f_{N=1}=0$
 $F_N = 686 N$ (same as part a)
 f_g

d)
$$t$$
 $v_{i} = t_{1.0} \frac{m}{2}$
 $v_{f} = 0$
 $t = 2.5 s$
 $a = ?$
 $f_{N} = ma$
 f