ADVANCED PLACEMENT PHYSICS ELECTRICITY AND MAGNETISM TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Coulomb constant, $k = \frac{1}{4\pi\epsilon_0} = 9.0 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$

Vacuum permittivity, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$

Vacuum permeability, $\mu_0 = 4\pi \times 10^{-7} \text{ (T} \cdot \text{m)/A}$

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$
Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Elementary charge, $e = 1.60 \times 10^{-19} \text{ C}$

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$

1 unified atomic mass unit, $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$

Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

Magnitude of the acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$

Magnitude of the gravitational field strength at Earth's surface, g = 9.8 N/kg

UNIT SYMBOLS		
ampere,	A	
coulomb,	C	
electron volt,	eV	
farad,	F	
henry,	Н	
hertz,	Hz	
joule,	J	
kilogram,	kg	
meter,	m	
newton,	N	
ohm,	Ω	
second,	S	
tesla,	Т	
volt,	V	
watt,	W	

PREFIXES			
Factor	Prefix	Symbol	
10^{12}	tera	T	
10°	giga	G	
10^{6}	mega	M	
10^{3}	kilo	k	
10^{-2}	centi	c	
10^{-3}	milli	m	
10^{-6}	micro	μ	
10 ⁻⁹	nano	n	
10^{-12}	pico	p	

	VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES						
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam:

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- The electric potential is zero at an infinite distance from an isolated point charge.
- The direction of current is the direction in which positive charges would drift.
- All batteries, wires, and meters are assumed to be ideal unless otherwise stated.

ELECTRICITY AND MAGNETISM

A = area

C =capacitance

E = electric field

J = current density

r = radius, distance, or

d = distance

I = current

 $\ell = length$

P = power

q = charge

Q = charge

t = time

position

volume

density

 $\Phi = \text{flux}$

U = potential energy

V = electric potential or

 ε = electric permittivity

 ρ = resistivity or charge

 κ = dielectric constant

R = resistance

F =force

$ \vec{F}_E = \frac{1}{4\pi\varepsilon_0} \frac{ q_1q_2 }{r^2} = k \frac{ q_1q_2 }{r^2}$
$\vec{E} = \frac{\vec{F}_E}{q}$
$\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r^2} \hat{r}$
$\Phi_E = \int \vec{E} \cdot d\vec{A}$
$\oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\varepsilon_0}$
$Q_{\text{total}} = \int \rho(r) dV$
$U_E = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$
$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}$
$\Delta V = -\int_{a}^{b} \vec{E} \cdot d\vec{r}$
$E_{x} = -\frac{dV}{dx}$
$\Delta U_E = q\Delta V$
$C = \frac{Q}{\Delta V}$
$C = \frac{\kappa \varepsilon_0 A}{d}$
$U_C = \frac{1}{2}Q\Delta V$
$\kappa = \frac{\varepsilon}{\varepsilon_0}$
$I = \frac{dq}{dt}$
$I = \int \vec{J} \cdot d\vec{A}$
$\vec{E} = \rho \vec{J}$
$R = \frac{\rho \ell}{A}$
$I = \frac{\Delta V}{R}$
$P = I\Delta V$

$$R_{\text{eq,s}} = \sum_{i} R_{i}$$

$$\frac{1}{R_{\text{eq,p}}} = \sum_{i} \frac{1}{R_{i}}$$

$$\frac{1}{C_{\text{eq,s}}} = \sum_{i} \frac{1}{C_{i}}$$

$$C_{\text{eq,p}} = \sum_{i} C_{i}$$

$$\tau = R_{\text{eq}} C_{\text{eq}}$$

$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\vec{F}_{B} = q(\vec{v} \times \vec{B})$$

$$d\vec{B} = \frac{\mu_{0}}{4\pi} \frac{I(d\vec{\ell} \times \hat{r})}{r^{2}}$$

$$\vec{F}_{B} = \int I(d\vec{\ell} \times \vec{B})$$

$$\oint \vec{B} \cdot d\vec{\ell} = \mu_{0} I_{\text{enc}}$$

$$B_{\text{sol}} = \mu_{0} nI$$

$$\Phi_{B} = \int \vec{B} \cdot d\vec{A}$$

$$\mathcal{E} = \oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_{B}}{dt}$$

$$|\mathcal{E}_{\text{sol}}| = N \left| \frac{d\Phi_{B}}{dt} \right|$$

$$L_{\text{sol}} = \frac{\mu_{\text{core}} N^{2} A}{\ell}$$

$$U_{L} = \frac{1}{2} LI^{2}$$

$$\mathcal{E} = -L \frac{dI}{dt}$$

$$\tau = \frac{L}{R_{\text{eq}}}$$

$$\omega_{LC} = \frac{1}{\sqrt{LC}}$$

A = areaB = magnetic fieldC = capacitanceF =force I = current $\ell = length$ L = inductancen = number of loopsper unit length N = number of loops q = charger = radius, distance, or position R = resistancet = timeU = potential energyv = velocity or speed $\varepsilon = \text{emf}$ μ = magnetic permeability τ = time constant $\Phi = \text{flux}$ ω = angular frequency

MECHANICS

	WILCII
$v_x = v_{x0} + a_x t$	a = acceleration
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	E = energy f = frequency
	F = force
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	h = height
$\Delta x = \int v_x(t) dt$	J = impulse k = spring constant
	K = kinetic energy
$\Delta v_{x} = \int a_{x}(t) dt$	$\ell = \text{length}$
\	m = mass
$\vec{x}_{\rm cm} = \frac{\sum m_i \vec{x}_i}{\sum m_i}$	M = mass p = momentum
$\sum m_i$	P = power
$\int \vec{r} dm$	r = radius, distance, or position
$\vec{r}_{\rm cm} = \frac{\int \vec{r} dm}{\int dm}$	t = time
J dm	T = period
$\lambda = \frac{d}{d\ell} m(\ell)$	U = potential energy $v =$ velocity or speed
l ac	W = work
$\vec{a}_{\text{sys}} = \frac{\sum \vec{F}}{m_{\text{sys}}} = \frac{\vec{F}_{\text{net}}}{m_{\text{sys}}}$	x = position or distance
$m_{\mathrm{sys}} - m_{\mathrm{sys}} - m_{\mathrm{sys}}$	y = height
\downarrow	λ = linear mass density μ = coefficient of friction
$\left \vec{F}_g \right = G \frac{m_1 m_2}{r^2}$	μ – coefficient of friction
$\left \left \vec{F}_f \right \le \left \mu \vec{F}_N \right \right $	
$\vec{F}_s = -k\Delta \vec{x}$	
$a_c = \frac{v^2}{r} = r\omega^2$	
$T = \frac{1}{f}$	
$\int_{0}^{T} f$	
$K = \frac{1}{2}mv^2$	
$W = \int_{0}^{b} \vec{F} \cdot d\vec{r}$	
a	$P_{\text{avg}} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$
$\Delta K = \sum W_i = \sum F_{ ,i} d_i$	
$\Delta U = -\int_{c}^{b} \vec{F}_{cf}(r) \cdot d\vec{r}$	$P_{\text{inst}} = \frac{dW}{dt}$
$F_{x} = -\frac{dU(x)}{dx}$	$\vec{p} = m\vec{v}$
GA.	$\vec{F}_{\rm net} = \frac{d\vec{p}}{dt}$
$U_{s} = \frac{1}{2} k \left(\Delta x\right)^{2}$	t ₂
m, m_2	$\vec{J} = \int_{t_1}^{t_2} \vec{F}_{\text{net}}(t) dt = \Delta \vec{p}$
$U_G = -G \frac{m_1 m_2}{r}$	
$\Delta U_{g} = mg\Delta y$	$\vec{v}_{\text{cm}} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$
	— · — ·

$$\omega = \frac{d\theta}{dt} \qquad \qquad a = \operatorname{acceleration} \\ d = \operatorname{distance} \\ f = \operatorname{frequency} \\ F = \operatorname{force} \\ I = \operatorname{rotational inertia} \\ k = \operatorname{spring constant} \\ k = \operatorname{sinetic energy} \\ \ell = \operatorname{length} \\ L = \operatorname{angular momentum} \\ m = \operatorname{mass} \\ M = \operatorname{mass}$$

GEOMETRY AND TRIGONOMETRY				
Rectangle	Rectangular Solid		A = area	Right Triangle
A = bh	$V = \ell w h$		b = base $C = circumference$	$a^2 + b^2 = c^2$
Triangle	Cylinder	S	h = height	$\sin \theta = \frac{a}{c}$
$A = \frac{1}{2}bh$	$V = \pi r^2 \ell$	$\frac{1}{\theta}$	$\ell = \text{length}$ $r = \text{radius}$	$\cos \theta = \frac{b}{a}$
2	$S = 2\pi r\ell + 2\pi r^2$		s = arc length	$\cos \theta = -\frac{1}{c}$
Circle	Sphere		S = surface area $V = $ volume	$\tan \theta = \frac{a}{b}$
$A=\pi r^2$	$V = \frac{4}{3}\pi r^3$	`~	w = width	c
$C = 2\pi r$	-		θ = angle	θ 90° _□
$s = r\theta$	$S = 4\pi r^2$			b

VECTORS	CALCULUS	IDENTITIES
$ \vec{A} \cdot \vec{B} = AB\cos\theta$ $ \vec{A} \times \vec{B} = AB\sin\theta$ $ \vec{r} = (A\hat{i} + B\hat{j} + C\hat{k})$	$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$ $\frac{d}{dx}(x^n) = nx^{n-1}$	$\log(a \cdot b^{x}) = \log a + x \log b$ $\sin^{2} \theta + \cos^{2} \theta = 1$ $\sin(2\theta) = 2\sin\theta\cos\theta$
$\vec{C} = \vec{A} + \vec{B}$ $\vec{C} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$	$\frac{d}{dx}(e^{ax}) = ae^{ax}$ $\frac{d}{dx}(\ln ax) = \frac{1}{x}$	$\frac{\sin\theta}{\cos\theta} = \tan\theta$
	$\frac{d}{dx} \left[\sin(ax) \right] = a \cos(ax)$ $\frac{d}{dx} \left[\cos(ax) \right] = -a \sin(ax)$	
	$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, n \neq -1$	
	$\int e^{ax} dx = \frac{1}{a} e^{ax}$ $\int \frac{dx}{x+a} = \ln x+a $	
	$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$ $\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$	