3. EQUILIBRIUM (~7%)

• 29 Multiple Choice Questions

14 Long Answer Problems

Answers:

Multiple Choice

1. c	11.a	21.c
2. c	12.c	22.c
3. d	13.a	23.c
4. a	14. c	24.c
5. a	15.c	25.c
6. d	16.a	26.b
7. a	17.b	27.a
8. c	18.d	28.b
9. b	19.a	29.b
10.d	20.d	

Long Answers

- 1. $T_1 = 252 \text{ N}$
- $T_r = 110 \text{ N}$ 2. b) 954 kg
- 3. a) 0.313 m
- b) 19.1 N
- 4. a) 19.9 kg
- 5. a) 125 N b)Increase
 - c)Hypotenuse
- 6. a) 65 kg
- 7. a)
 - b) 36.6 N
- - b) 283 N

- c) 438 N
- d) 0.645
- 9. $1.50 \times 10^3 \text{ N}$
- 10. a) 91.4 N
 - b) 18.4 kg
- 11. a) 449 N
 - b) 368 N
- 12. a)
 - b) 93.3 kg
- 13. $F_1 = 299 \text{ N}$ $F_r = 593 \text{ N}$
- 14. a)
 - b) $3.81 \times 10^2 \text{ N}$

Multiple Choice:

- 1. In which direction should a force act at point P to hold the boom in equilibrium so that the force will be a minimum?

 - B. 2
 - C. 3
 - D. 4

rope as shown.

2. A uniform 16.0 kg boom of length 4.0 m is supported by a

Find the tension in the rope.

- A. 1.0×10^{2} N B. 1.2×10^2 N
- C. 2.0×10^2 N
- $D.3.0 \times 10^{2} N$
- 3. An artist must push with a minimum force of 75 N at an angle of 45° to a picture to hold it in equilibrium. The coefficient of friction between the wall and the picture frame is 0.30. What is the mass of the picture?

- B. 2.3 kg
- C. 3.8 kg
- D. 7.0 kg

- 4. Two forces, 12 N west and 5.0 N north, act on an object. What is the direction of a third force that would produce static equilibrium?
 - A. 23° south of east
- B. 23° north of west
- - C. 67° south of east D. 67° north of west
- 5. A 3.0 m uniform beam of mass 15 kg is pivoted 1.0 m from the end as shown below.

- A 35 kg child sits 0.60 m from the pivot. How far, d, from the pivot, must a 20 kg child sit in order for the beam to be in equilibrium?
 - A. 0.68 m
- B. 1.0 m
- C. 1.1 m
- D. 1.4 m

- 6. A mass suspended by a string is held 24° from vertical by a force of 13.8 N as shown. Find the mass.
 - A. 0.57 kg
 - B. 1.5 kg
 - C. 3.2 kg
 - D. 3.5 kg
- 7. The diagram shows a horizontal beam of negligible mass. The wall exerts a 42.0 N horizontal force on the lever. Find the weight of the load.
 - A. 16.1 N
 - B. 22.3 N
 - C. 34.4 N
 - D. 47.6 N
- 8. A 75 kg traffic light is held stationary midway between two supports, as shown in the diagram below.

- 9. A uniform beam of mass 25 kg rests on supports P and Q, as shown in the diagram below.
- What force is exerted by support Q on the beam?
 - A. 1.2×10^2 N
 - B. 1.6×10^{2} N
 - C. 3.3×10^{2} N
 - D. 4.9×10^{2} N
- 10. A boom hinged at P is held stationary, as shown in the diagram below.
- If the tension in the supporting cord, attached three-quarters of the way along the boom from P, is 720 N, what is the weight of the boom?
 - A. 720 N
 - B. 1080 N
 - C. 1440 N
 - D. 2160 N
- 11. What are the units of torque?
 - A. N· m
- B. N/m
- C. N. s
- D. N/s

string

12. A uniform 1.60 m board rests on two bricks as shown below. The left brick exerts an upward force of 12 N on the board.

What upward force does the right brick exert?

- A. 3.0 N
- B. 12 N
- C. 24 N
- D. 36 N
- 13. A uniform 3.5 m beam of negligible mass, hinged at P. supports a hanging block as shown.
- If the tension F_T in the horizontal cord is 150 N, what is the mass of the hanging block?
 - A. 9.2 kg
 - B. 12 kg
 - C. 16 kg
 - D. 46 kg

 $F_T = 150 \text{ N}$

- 14. A uniform 3.0 kg shelf of width 0.50 m is supported by a bracket, as shown in the diagram to the left.
- What force does the bracket exert on the shelf?
- A. 7.4 N
- B. 38 N
- C. 48 N
- D. 57 N
- 15. The motorcycle shown has a mass of 200 kg and a wheel base of 1.8
 - If the rear wheel exerts a 1 200 N force on the ground, find how far the motorcycle's centre of gravity is located from the front wheel.
 - A. 0.70 m
 - B. 0.90 m
 - C. 1.1 m

 - D. 1.2 m

- 16. A body is in rotational equilibrium when
 - A. $\Sigma \tau = 0$
- B. $\Sigma F = 0$
- C. $\Sigma p = 0$
- D. $\Sigma E k = 0$

17. A 110 kg object is supported by two ropes attached to the ceiling. What is the tension T in the right-hand rope?

A. 460 N

B. 540 N

C. 930 N

D. 1 300 N

What is the overall length of this plank?

A. 2.6 m

B. 3.3 m

C. 5.4 m

D. 6.7 m

19. State the condition for translational equilibrium.

A. $\Sigma F = 0$

B. $\Sigma F \neq 0$

C. $\Sigma \tau = 0$

D. $\Sigma \tau \neq 0$

· 1.3 m -

110 kg

20. An 85.0 kg mountaineer remains in equilibrium while climbing a vertical cliff. The tension force in the supporting rope is 745 N.

Find the magnitude of the reaction force, F, which the cliff exerts on the mountaineer's foct.

A. 88.0 N

B. 373 N

C. 479 N

D. 546 N

21. A uniform 15 kg pipe of length 5.0 m has a 160 N force applied 4.0 m from its lower end as shown.

Using the point where the pipe touches the ground as a pivot, calculate the sum of the torques acting on the pipe.

A. 180 N·m in a clockwise direction.

B. 270 N·m in a clockwise direction.

C. 120 N·m in a counter-clockwise direction.

D. 270 N·m in a counter-clockwise direction.

22. A 220 N bag of potatoes is suspended from a rope as shown in the diagram. A person pulls horizontally on the bag with a force of 80 N.

What is the tension in the rope?

A. 1. 4×10^2 N

B. 2. 2×10^2 N

C. 2. 3×10^{2} N

D. 3. 0×10^{2} N

At what minimum distance, x, can the string be attached without breaking?

A. 0.16 m

B. 0.20 m

Right-handrope

 $F_{\tau} = 745 \text{ N}$

C. 0.55 m

D. 0.70 m

24. The diagram shows the forces acting on a massless ladder resting on the floor and a frictionless slope.

As a person walks up the stationary ladder, what happens to the magnitude of the forces F_{M1} and F_{M2} ?

	MAGNITUDE OF F _{N1}	MAGNITUDE OF F _{N2}
A.	Decrease	Decrease
B.	Decrease	Increase
Ç.	Increase	Decrease
D.	Increase	Increase

25. Two forces act at point P as shown below.

Find the magnitude of the third force required to achieve equilibrium.

A. 4.5 N

B. 5,5 N

C. 6.3 N

D. 7.2 N

26. Which of the following shows a uniform beam which is in rotational equilibrium but not translational equilibrium?

27. A trailer carrying a boat is supported by a scale which initially reads 48 kg. The boat (and therefore its centre of gravity) is moved 0.15 m further back on the trailer. The scale now reads 37 kg. Find the mass of the boat.

- 28. A mass of 5.0 kg is suspended from a cord as shown in the diagram below. What horizontal force F is necessary to hold the mass in the position shown?
 - A. 28 N B. 34 N
 - C. 40 N
 - D. 70 N

29. A uniform 25 kg bar, 6.0 m long, is suspended by a cord as shown.

Written Problems:

1. A 25 kg droid rests on a 5.0 m long shelf supported by two cables as shown. The mass of the shelf is 12 kg.

Find the tension in each cable. (7 marks)

2. A uniform 350 kg beam of length 4.2 m is held stationary by a horizontal cable. The cable is attached to a point on the beam 3.0 m from the hinge.

- a) Draw and label a free body diagram showing the forces on the beam. (2 marks)
- b) If the maximum tension the cable can withstand is 1.3 ×10⁴ N, what maximum mass, m, can be suspended from the end of the beam? (5 marks)
- 3. A 0.75 kg board of length 2.60 m initially rests on two supports as shown.

- a) What maximum distance, x, from the right-hand support can a 1.20 kg bird walk before the board begins to leave the left-hand support? (5 marks)
- b) What force does the right-hand support exert on the board at that instant? (2 marks)

4. A uniform beam 6.0 m long, and with a mass of 75 kg, is hinged at A. The supporting cable keeps the beam horizontal.

If the maximum tension the cable can withstand is 2.4×10^3 N, what is the maximum mass of the load? (7 marks)

5. Peter exerts a horizontal force F on a 12 kg bucket of concrete so that the supporting rope makes an angle of 20° with the vertical.

- a) Find the tension force in the supporting rope. (5 marks)
- b) Peter now exerts a new force which causes the rope to make a greater angle with the vertical. How will the tension force in the supporting rope change?
 - The Tension force will Increase
 - □ The Tension force will decrease
 - The Tension force will remain constant

(Check one response.) (1 mark)

- c) Using principles of physics, explain your answer to b). (3 marks)
- 6. A 3.8 m uniform beam is attached to the ceiling with a hinge at A and a cord with a tension of 300 N at B.

Determine the mass of the beam. (7 marks)

7. A uniform 4.8 m long ladder of mass 16 kg leans against a frictionless vertical wall as shown in the diagram below.

- a) Draw and label a free body diagram showing the forces acting on the ladder. (2 marks)
- b) What minimum force of friction is needed at the base of the ladder to keep it from sliding? (5 marks)
- 8. A 60 kg block rests on the ground. A student exerts a 320 N force on the block by pulling on a rope, but friction prevents the block from moving.

- a) Draw and label a free body diagram showing all forces acting on the block. (2 marks)
- b) Calculate the force of friction on the block. (2 marks)
- c) Calculate the normal force exerted by the ground on the block. (2 marks)
- d) Calculate the minimum coefficient of friction between the block and the ground. (1 mark)
- 9. A 6.0 m uniform beam of mass 25 kg is suspended by a cable as shown. An 85 kg object hangs from one end.

What is the tension in the cable? (7 marks)

10. A floodlight is suspended from two cables as shown below. The tension in the right cable is 140 N.

- a) What is the tension in the left cable? (3 marks)
- b) What is the mass of the floodlight? (4 marks)
- 11. A uniform 15 kg beam of length 4.0 m is supported against a wall as shown in the diagram. A 25 kg object is suspended 3.0 m from the hinge P.

- a) What is the tension in the support cable? (5 marks)
- b) What is the magnitude of the horizontal component of the reaction force of the wall on the beam at the hinge P? (2 marks)
- 12. A circus performer walks across a wire stretched between two vertical posts. When the performer stands at position X as shown below, the tension in the short length of wire attached to post B is 1.8×10^3 N.

- a) Draw and label a free body diagram showing the forces acting at position X. (2 marks)
- b) What is the mass of the circus performer? (5 marks)

13. A 75 kg painter stands on a uniform 5.0 m board of mass 16 kg supported horizontally by two ladders. Find the forces exerted by each ladder on the board. (7 marks)

14. A 750 N weight is supported by two ropes fastened together by a knot, as shown in the diagram below.

- a) Draw a free-body diagram showing the forces acting on the knot. (2 marks)
- b) What is the tension in rope 1? (5 marks)