Name:

Physics 12 M. Lam

Graphical Analysis

Block:

Graphical Analysis is used in labs to

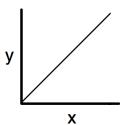
- 1. establish a relationship between two variables
- 2. calculate the constant that transforms the relationship into an equation

Establishing a relationship between two variables

The relationship between the variables is shown by the shape of the graph.

Note:

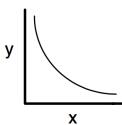
Linear



y is directly proportional to x

Equation: y = kx

Inverse Relationship

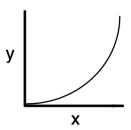


y is inversely proportional to x (or y is directly proportional to 1/x)

$$y \propto \frac{1}{r}$$

Equation: $y = \frac{k}{x}$

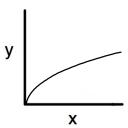
Power Law (quadratic, cubic, etc.)



y is directly proportional to the square of x $y \propto x^2$

Equation: $y = kx^2$

Square Root



y is directly proportional to the square root of x

 $y \propto \sqrt{x}$

Equation: $y = k\sqrt{x}$

To confirm the relationship, plot y vs. f(x). If the relationship is correct, the graph of y vs. f(x) will yield a straight line passing through the origin (or close to it). For example, if you suspect that y is proportional to x^2 (y vs. x is a parabola), plot y vs. x^2 .

Determine the constant of proportionality

Upon attaining a straight line graph, the constant of proportionality k can be calculated by finding the **slope** of the best fit line.

For manual slope calculations:

- Data points should not be used as data points are not necessarily on the best fit line.
- Use a large triangle to calculate the slope for more precision.

Dimensional analysis can be used to determine the units of the slope.

SI Base Units

Base Quantity	Name	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electric current	ampere	Α
Thermodynamic temperature	kelvin	К
Amount of a substance	mole	mol
Luminous intensity	candela	cd

Some SI Derived Units

Derived Quantity	Name	Symbol	Expressed in base units	Expressed in other SI units
Density	kilogram per cubic meter	kg/m³	kg/m³	
Electric charge	coulomb	С	A·s	
Electric field	newton per coulomb	N/C	kg·m/A·s³	V/m
Electric potential difference	volt	V	kg·m²/A·s³	W/A, J/C
Electric resistance	ohm	Ω	kg·m²/A²·s³	V/A
Energy, work	joule	J	kg·m²/s²	N·m
Force	newton	N	kg·m/s²	
Frequency	hertz	Hz	S ⁻¹	
Magnetic field	tesla	Т	kg/A·s²	Wb/m²
Magnetic flux	weber	Wb	kg·m²/A·s²	V·s
Power	watt	W	kg·m²/s³	J/s
Pressure	pascal	Pa	kg/m·s²	N/m²
Torque	newton meter	N·m	kg·m²/s²	

Determine the physical meaning of the slope

Consider what physical laws would apply and use these laws and equations to determine a theoretical equation which relates the two variables.

Compare the experimental equation to the theoretical equation to provide an interpretation of the slope (k = one or more constants).

Once you have provided an interpretation of the slope, you can do the following:

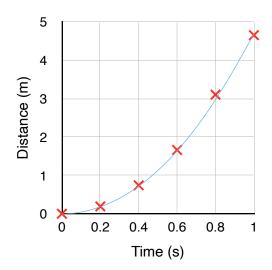
- 1. If the slope depends on known parameters, you can determine the theoretical value of the slope by using the theoretical value of those parameters.
- 2. If the slope depends on some physical constant, you can determine the experimental value of that physical constant by using your experimental value of the slope.

© 2017–2024 Mark Lam mrlamphysics.com

Example

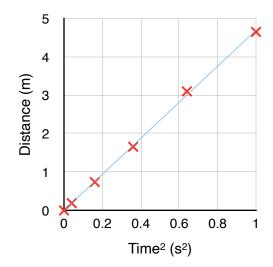
A ball is dropped and the total distance travelled at different times in its fall is measured.

Time (s)	Distance (m)
0	0
0.2	0.19
0.4	0.74
0.6	1.66
0.8	3.10
1.0	4.65



The relationship between distance and time appears parabolic. Verify this by plotting displacement vs. time².

Time ² (s ²)	Distance (m)
0	0
0.04	0.19
0.16	0.74
0.36	1.66
0.64	3.10
1.00	4.65



The plot of displacement vs. time² produces a linear graph confirming the relationship.

$$d \propto t^2$$

© 2017–2024 Mark Lam mrlamphysics.com

Calculate the slope to determine the constant of proportionality.

$$d = kt^2$$

$$k = \frac{\Delta d}{\Delta t^2} = \frac{(4.7 - 0.9) \,\mathrm{m}}{(1.0 - 0.2) \,\mathrm{s}^2} = 4.75 \frac{\mathrm{m}}{\mathrm{s}^2}$$

Compare the experimental equation to the theoretical equation to interpret the slope k.

Experimental equation:

$$d = kt^2$$

Theoretical equation:

$$d = v_i t + \frac{1}{2} a t^2 \text{ with } v_i = 0 \text{ and } a = g$$

$$d = \frac{1}{2} g t^2$$

$$k = \frac{1}{2}g$$

The theoretical value of the slope k can be determined by using the theoretical value of g.

$$k_{\text{theo}} = \frac{1}{2}g_{\text{theo}} = \frac{1}{2}\left(9.8\frac{\text{m}}{\text{s}^2}\right) = 4.9\frac{\text{m}}{\text{s}^2}$$

The experimental value of g can be determined by using the experimental value of k.

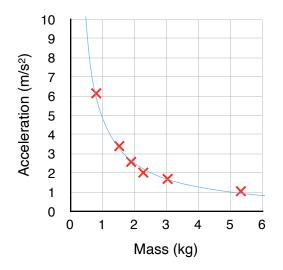
$$k_{\text{exp}} = \frac{1}{2}g_{\text{exp}}$$

 $g_{\text{exp}} = 2k_{\text{exp}} = 2\left(4.75\frac{\text{m}}{\text{s}^2}\right) = 9.5\frac{\text{m}}{\text{s}^2}$

Example

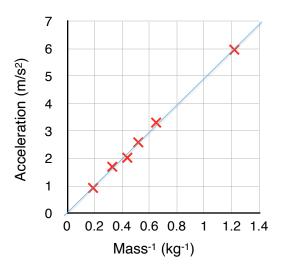
Boxes of varying masses are pushed across a frictionless surface with a constant horizontal force of 5.0 N. The acceleration of each box is measured.

Mass (kg)	Acceleration (m/s²)
0.82	6.15
1.54	3.40
1.91	2.58
2.29	2.02
3.05	1.69
5.34	1.05



The relationship between acceleration and mass appears to be a reciprocal function. Verify this by plotting acceleration vs. mass⁻¹.

Mass ⁻¹ (kg ⁻¹)	Acceleration (m/s²)
1.22	6.15
0.65	3.40
0.52	2.58
0.44	2.02
0.33	1.69
0.19	1.05



The plot of acceleration vs. mass-1 produces a linear graph confirming the relationship.

$$a \propto \frac{1}{m}$$

Calculate the slope to determine the constant of proportionality.

$$a = k \frac{1}{m}$$

$$k = \frac{\Delta a}{\Delta \frac{1}{m}} = \frac{\left(6.9 - 1.0\right)\frac{\text{m}}{\text{s}^2}}{\left(1.4 - 0.2\right)\frac{1}{\text{kg}}} = 4.92 \text{ kg}\frac{\text{m}}{\text{s}^2} = 4.92 \text{ N}$$

Compare the experimental equation to the theoretical equation to interpret the slope k.

Experimental equation:

Theoretical equation:

$$a = k \frac{1}{m}$$

$$a = \frac{F_{\text{net}}}{m}$$

$$k = F_{\text{net}}$$

The theoretical value of the slope can be determined by using the theoretical value of F_{net} .

$$k_{\text{theo}} = F_{\text{theo}} = 5.0 \text{ N}$$

The experimental value of F_{net} can be determined by using the experimental value of k.

$$k_{\rm exp} = F_{\rm exp}$$

$$F_{\rm exp} = k_{\rm exp} = 4.92 \text{ N}$$