Physics 11 **Relationships Between Variables** M. Lam Block:

A relationship in physics describes how a change to one variable will affect another.

There are two types of relationships:

Direct: The two variables do the same thing. If one variable increases, so does the other and vice versa.

Inverse: The two variables do the opposite. If one variable increases, the other decreases.

Relationships are usually written as proportionalities and use the symbol \propto to symbolize the proportion. To make an equation we add a constant (usually k, if unknown) and change the proportionality sign into an equals sign.

Note: ∝ means "proportional to" k is the constant of proportionality

Directly Proportional (Linear)

We say: y is directly proportional to x

Proportionality: $y \propto x$

Equation: y = kx

Meaning: If x increases, y increases proportional to x. For example, if x doubles, y doubles; if x is halved, y is halved.

Example: What will be the change in the force of friction if the normal force is decreased by a factor of three?

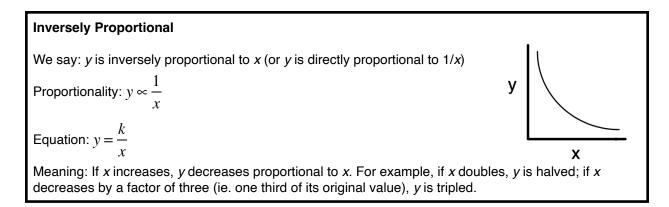
 $F_f = \mu F_N$

Force of friction is directly proportional to normal force.

If the normal force decreases, so does the force of friction.

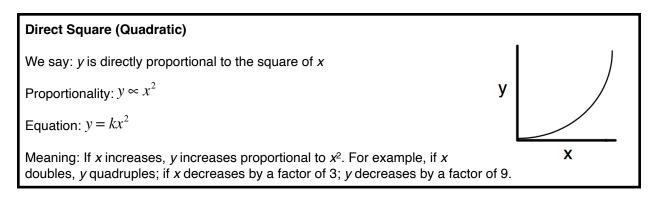
If F_N is decreased by a factor of three, F_f is decreased by a factor of three (×1/3).

Х



y

Name:


Example: What will be the change in the acceleration if the mass is increased by a factor of five?

$$a = \frac{F_{NET}}{m}$$

Acceleration is inversely proportional to mass.

If the mass is increased (and the net force is kept constant), then the acceleration decreases.

If *m* is increased by a factor of five, the acceleration is decreased by a factor of five $(\times 1/5)$.

Example: What will be the change in the kinetic energy if velocity is tripled?

$$E_{\rm k} = \frac{1}{2}mv^2$$

The kinetic energy is directly proportional to the square of velocity.

If v is tripled, E_k is increased by a factor of nine (×9).

Inverse Square

We say: y is inversely proportional to the square of x

Proportionality:
$$y \propto \frac{1}{x^2}$$

Equation: $y = \frac{k}{x^2}$

Meaning: If x increases, y decreases proportional to x^2 . For example, if x doubles, y decreases by a factor of four; if x decreases by a factor of three, y increases by a factor of nine.

y

Х

Example: What will be the change in the gravitational force if the separation distance is increased by a factor of 10?

$$F_g = G \frac{m_1 m_2}{r^2}$$

Gravitational force is inversely proportional to the square of the separation distance.

If *r* is increased by a factor of ten, F_g is decreased by a factor of 100 (×1/100).

Relationships between multiple variables

If there is a relationship between multiple variables, all of which change, you can look at each variable independently and then find their combined effect.

Example: For an object in uniform motion, what will be the change in the displacement if the velocity is increased by a factor of four but the time is halved?

d = vt

Displacement is directly proportional to both velocity and time.

If *v* is increased by a factor of four, *d* is increased by a factor of four (×4) If *t* is halved, *d* is halved (×1/2)

 $(\times 4)(\times 1/2) = \times 2$

The displacement will be doubled.

Example: What will be the change in the gravitational field if the mass is doubled and the radius is tripled?

$$g = G \frac{M}{r^2}$$

Gravitational field strength is directly proportional to the mass and inversely proportional to the square of the distance.

If *m* is doubled, *g* is doubled (×2). If *r* is tripled, *g* is decreased by a factor of nine (×1/9).

 $(\times 2)(\times 1/9) = \times 2/9$

The gravitational field will be 2/9 of its original value.