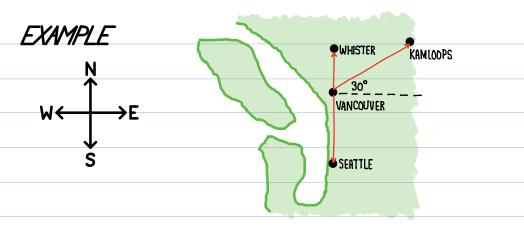


SCALARS AND VECTORS

- TITIES ARE EITHER
- SCALARS HAVE ONLY MAGNITUDE (SIZE).

EXAMPLE

HEIGHT = 170 cm AGE = 17 years

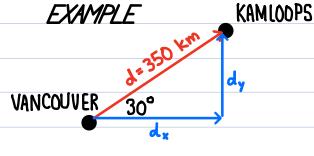

· VECTORS HAVE BOTH MAGNITUDE

VELOCITY = 5 ^m/_s EAST

ACCELERATION = 9.8 # DOWN

TOR CAN BE REPRESENTED BY

GNITUDE OF THE VECTOR IS D BY THE LENGTH OF


WHISTLER: 120 km NORTH

SEATTLE : 200 km SOUTH

KAMLOOPS: 350 km 30° NORTH OF EAST

60° EAST OF NORTH IS ALSO CORRECT BUT THE CONVENTION IS TO USE THE SMALLER ANGLE.

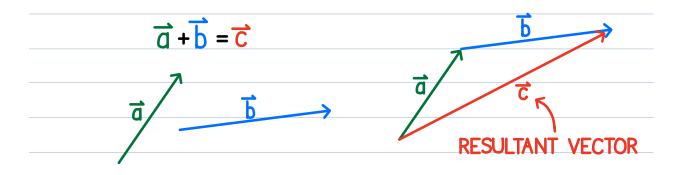
A VECTOR AT AN ANGLE CAN BE SPLIT IN TO HORIZONTAL AND VERTICAL COMPONENTS.

$$\sin 30^{\circ} = \frac{dy}{d}$$

$$dy = d \sin 30^{\circ}$$

$$= 350 \sin 30^{\circ}$$

$$= 175 \text{ km NORTH}$$


$$\cos 30^\circ = \frac{d_x}{d}$$

= 350 cos30°

= 303 km EAST

KAMLOOPS IS 303 km
EAST AND 175 km NORTH
OF VANCOUVER.

EXAMPLE ETERMINE THE HORIZONTAL AND COMPONENTS OF THE OLLOWING VECTOR: 56 = 25° WEST OF SOUTH VECTOR ADDITION · VECTORS CAN BE ADDED USING THE COND VECTOR WITH S TAIL AT THE HEAD OF THE FIRST VECTOR IS DRAWN ECTOR TO THE HEAD OF THE

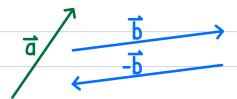
EXAMPLE

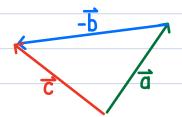
AARON WALKS 2.5 km EAST THEN
3.0 km 35° NORTH OF EAST. WHAT IS HIS
TOTAL DISPLACEMENT?

· VECTORS CAN ALSO BE ADDED USING
THE COMPONENT METHOD.
SPLIT VECTORS IN TO HORIZONTAL
AND VERTICAL COMPONENTS.
· ADD HORIZONTAL AND VERTICAL
COMPONENTS SEPARATELY TO
DETERMINE THE COMPONENTS OF
THE RESULTANT VECTOR.
·USE THE PYTHAGOREAN THEOREM
AND TANGENT TO DETERMINE THE
MAGNITUDE AND DIRECTION OF
THE RESULTANT VECTOR.
WHEN ADDING THREE OR MORE VECTORS. THE COMPONENT METHOD IS MORE EFFICIENT.
EXAMPLE
AARON WALKS 2.5 km EAST THEN
3.0 km 35° NORTH OF EAST. WHAT IS HIS
TOTAL DISPLACEMENT?

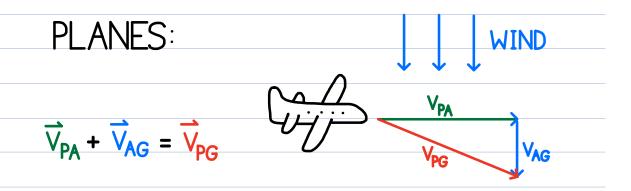
VECTOR SUBTRACTION TO SUBTRACT A VECTOR ADD ITS OPPOSITE MOST OFTEN USED TO DETERMINE

MOST OFTEN USED TO DETERMINE THE CHANGE IN A VECTOR QUANTITY:


$$\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{c}$$


$$\overrightarrow{a} + (-\overrightarrow{b}) = \overrightarrow{c}$$

$$\overrightarrow{a} + (-\overrightarrow{b}) = \overrightarrow{c}$$


$$(I.E. DISPLACEMENT)$$

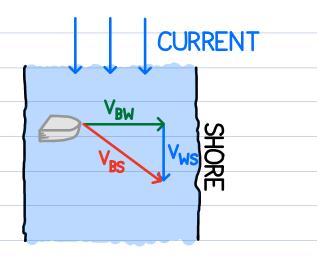
$$\overrightarrow{a} + \overrightarrow{v}_f - \overrightarrow{v}_i$$

THE M THE DO OBSER' THE DO	TIONAR 10VEME 0G IS VER. A 0G IS 1	NT OF SEEN S FEW S 10.0 m	A DO 5.0 m E SECON 45° NO	G. INIT AST OF DS LAT	THE ER, E EAST.

VPA : VELOCITY OF PLANE RELATIVE TO AIR

· AIRSPEED OF PLANE · VELOCITY IN STILL AIR

DIRECTION THE PLANE IS AIMED


VAG : VELOCITY OF AIR
RELATIVE TO GROUND

· WIND VELOCITY

VPG : VELOCITY OF PLANE OF PLANE RELATIVE TO GROUND RESULTANT

$$\vec{V}_{PA} + \vec{V}_{AG} = \vec{V}_{PG}$$

V_{BW}: VELOCITY OF BOAT RELATIVE TO WATER

· ROWING SPEED

·VELOCITY IN STILL WATER

DIRECTION THE BOAT IS AIMED

VWS : VELOCITY OF WATER RELATIVE TO SHORE

· CURRENT VELOCITY

V_{BS}: VELOCITY OF BOAT RELATIVE TO SHORE

· RESULTANT VELOCITY WITH CURRENT REDIRECTION

EXAMPLE
A RIVER FLOWS WEST AT A SPEED
OF 4.0 밖. WHAT WOULD BE THE
VELOCITY OF A BOAT RELATIVE TO THE
SHORE IF THE BOAT AIMS
a) WEST AT 10.0 点?
b) EAST AT 10.0 m?
c) SOUTH AT 10.0 th?